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Strait of Gibraltar and Western Mediterranean 
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● AJ - Atlantic Jet

● WAG - Western Alboran 
Gyre

● EAG - Eastern Alboran Gyre

● Camarinal Sill (CS): 
Underwater elevation where 
an internal hydraulic jump 
gives rise to

- internal waves 
comprising solitons

- internal tides.

                                                                        

                                                                                           [Sánchez-Garrido, 2013]

https://docs.google.com/file/d/1M71c9DO6ioPusQ91QgYh5SSsiK_BQFpi/preview
https://docs.google.com/file/d/1avV_PRKmjQ1w2PuC2xrZzklv2zCV19Su/preview


Known oceanographic features near Strait of Gibraltar 
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Terra, 22 May, 11:30 UTC
MODIS, Enhanced True Colour RGB.
Source: NASA EOSDIS Worldview

3Internal Waves

Western Alboran Gyre

● Interested in 
recovering/decomposing 
known and hidden features

- Gyres
- Atlantic Jet
- Internal waves
- Hydraulic transitions
- Special waves (such 

as Kelvin waves)

● Applied Dynamic Mode 
Decomposition (DMD) to 
simulated evolution

[Sánchez-Garrido, 2013], [Gofima UMA, YouTube], 
[NASA EOSDIS Worldview]

http://www.youtube.com/watch?v=apfR9DdstMo


Numerical Model 
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MIT general circulation model (MITgcm; [8]) (3-D, 
finite-volume) simulating the 3D velocity components, 
temperature, salinity and density.

Input to analysis: velocity components at all grid 
points.

Grid:

● Nonuniform curvilinear orthogonal grid 
(190 x 96 x 32 nodes )

● Duration of 144h (6 days) with time step 1h

Forcing: Tidal currents extracted from intermediate 
resolution model and prescribed at open boundaries: 

● diurnal (O1, K1) tides,
● semidiurnal (M2, S2) barotropic tides.

                                                                        

                                                                                           

[Sánchez-Garrido, 2011]

Simulated surface speed:

https://docs.google.com/file/d/1avV_PRKmjQ1w2PuC2xrZzklv2zCV19Su/preview


Dynamic Mode Decomposition (DMD) 

5

Why DMD?
- Isolate specific dynamic structures
- Equation free modeling
- Reduce the dimension of the data
- Simple algorithm and computation
- Can identify physically meaningful 

decomposition

Input Data

Exact DMD

[Tu, 2014], [Budišić, 2012]



Objective: Represent simulation data by a linear, 
separation-of-variables data model. Such linearization is justified by 
Koopman operator theory.

Spatial profile
Mode 
magnitude

Time-evolution 
governed by eigenvalue

Spatiotemporal 
snapshot matrix

Dominant modes: large mean L2 norm

Real parts of eigenvalues imply growth/decay 
of a modes:

Growth of mode

Decay of mode

Imaginary parts of eigenvalues reported as 
oscillation period

Input data: 

Semidiurnal 
dominant 
mode:

Diurnal 
dominant 
mode:

DMD modes oscillate at a single (complex) time frequency.

Dynamic Mode Decomposition 

https://docs.google.com/file/d/1avV_PRKmjQ1w2PuC2xrZzklv2zCV19Su/preview
https://docs.google.com/file/d/13gIGTa7D31Zv9fg_vZkXow489iMcHXr8/preview
https://docs.google.com/file/d/1Su7WezoXSX19N05UITivnpV0S-R6-7S6/preview


Behavior of Modes by Continuous- time Spectrum

Growing

Periodic

Decaying



Best-Fit of Modes
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● L2 norm contribution to the initial condition.
- Sorting modes according to 

descending  |b|.
● Average L2-contribution across all 

snapshots

● Selection  of  modes  based  on  the  
oscillation  frequency associated  with  
eigenvalues  enables matching of modes 
to frequencies known a priori, e.g., forcing 
frequencies.

Mode Selection

● DMD Algorithm decompose the data in to dynamical 
relevant flows features (same frequency).

● Noticed               could be complex values.

● Eigenvalues     describe the dynamics of the system.

● Magnitude and phase describes the how the spatial 
locations related each within a mode.



DMD for Gibraltar Dataset: Eigenvalue Spectrum



DMD Modes: Periods, decay rates, norms
Index

Half Life 
(h) (h)

Mean L2 
Norm |b|

1 668.10 Inf 144.84 155.63

3 19.91 73.47 82.44 259.25

5 35116.86 12.31 71.23 71.33

7 18.90 57.93 70.85 228.63

9 32.88 228.92 70.24 172.08

11 4.33 19.87 68.73 463.55

13 36.37 11.74 43.56 101.58

15 172.44 24.65 36.32 47.04

17 29.34 26.61 25.94 67.23

19 22.42 21.34 22.97 68.08

21 43.32 13.04 18.94 40.59

23 9.99 7.48 16.99 75.44

25 1.34 3.55 16.71 202.43

27 25.96 37.70 14.85 40.91

29 12.87 4.02 11.52 45.04

31 29.35 10.86 11.32 29.33

33 124.52 8.17 11.07 15.61

35 296.88 6.24 10.78 12.60

37 64.91 8.37 9.81 17.51

39 59.96 4.06 8.45 15.61

41 28.69 7.57 8.02 21.03

43 10.38 4.54 7.99 34.78

45 5.29 3.21 7.74 47.21

47 273.20 6.06 7.65 9.07

49 29.82 17.42 7.42 19.08

Background mode

Semidiurnal

Diurnal

Fast decay

Slow decay

Sem
idiu

r

nal

Diurn
al

Duration of data

Tidal Component Darwin Period (hr) Speed(°/hr)

Principal lunar 
semidiurnal M2 12.4206 28.9841

Principal solar 
semidiurnal S2 12 30

Smaller lunar elliptic 
diurnal M1 24.841 14.4921

DMD mode 1 is 
approximately 
non-oscillatory.

DMD modes 5 
related to M2 tidal 
mode.

Period of DMD 
mode 15 is equals 
to M1 tidal period.
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Mode 1: Non-oscillatory Background – Surface Speed

Atlantic
JetHydraulic

transition

West Alboran 
Gyre

Secondary
Gyre

 (
m

/s
)

● Approximately non-oscillatory
● Persistent: Decay with half life time 

around 27 days (668 hours)
● Reveals several well-known features 

of the circulation in the region
- West Alboran Gyre (WAG)
- Atlantic Jet
- the accelerated surface inflow 

in the Strait of Gibraltar.
● Also reveals a feature that is not as 

well known: secondary gyre that sits 
between the Ceuta and the WAG
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Mode 1: Non-oscillatory Background – Vertical cross section

Spart
el Sill

Hydraulic transition: westward flowing water 
spills over the Camarinal sill and gains speed

Horizontal speed Vertical velocity

Two-layer 
exchange 
flow
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Mode 5: Dominant Semidiurnal (P=12.3 h)

Camarinal Sill

Horiz. speed at surface (magnitude)

Horiz. speed at surface (phase)

Cross-sec. vertical velocity

Cross-sec. vertical velocity phase

● Persistent: Effectively no 
decay

● Reveals internal waves 
radiating from the Strait into 
the Mediterranean.

https://docs.google.com/file/d/13gIGTa7D31Zv9fg_vZkXow489iMcHXr8/preview
https://docs.google.com/file/d/1vxC4nylTazPW8k70w4IwX6SP81yfT8HE/preview
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Mode 35: 2nd Harm. of Semidiurnal Tide (P=6.24h)
Surface horiz. speed magnitude

Surface horiz. speed phase

Cross-sec. vertical vel.

Cross-sec. vertical phase

● Second harmonic of 
semidiurnal tide, and third 
harmonic of diurnal tides.

● Persistent: Decay with half 
life time around 297 hours 
(~2x available data length).

● Reveals internal waves 
radiating from the Strait into 
the Mediterranean.

https://docs.google.com/file/d/1gR9PmZBkekhtNoGHj5Cvf3Ucdh3r_5xs/preview
https://docs.google.com/file/d/1g9pYhKnMi2kWU7Eg4c7O8gkEVBqDLkQe/preview
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Mode 15: Dominant Diurnal (P=24.65h) – Surface Section 

(II) Coastal trapped 
Kelvin Waves

(I) Bands of alternating 
surface flow

● Persistent: Decay half life 
around 172 h (7 days). 

● (I) Isolates the meandering 
of the Atlantic Jet.

● Indicates that Atlantic Jet 
meanders are locked with a 
tide (first observation?).

● (II) Shows two patches of 
strong horizontal surface 
velocity along the southern 
coastline (Kelvin waves)

Surface horiz. speed magnitude

Surface horiz. speed phase

Hypothesis: Meanders originate from tidal pulses of vorticity 
generated in the strait and then carried by the jet.

https://docs.google.com/file/d/1Su7WezoXSX19N05UITivnpV0S-R6-7S6/preview


16

Mode 15: Dominant Diurnal (P=24.65h) – Vertical Section 

(I) Bands of alternating surface flow
● Persistent: Decay half life 

around 172 h (7 days). 
● (I) Isolates the meandering 

of the Atlantic Jet.
● Indicates that Atlantic Jet 

meanders are locked with a 
tide (first observation?).

● (II) Shows two patches of 
strong horizontal surface 
velocity along the southern 
coastline (Kelvin waves)

https://docs.google.com/file/d/1Ysa86BPJNc9aV6zPWbENSVwxZZs9zWhM/preview
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Mode 33: 3rd Harm. of Diurnal Tide (P=8.17h)
Horiz. speed at surface (magnitude)

Horiz. speed at surface (phase)

Cross-sec. vertical velocity

Cross-sec. vertical velocity phase

● Persistent: Decay with half 
life time around 124 hours. 

● Exhibits internal wave 
activity and shows additional 
detail in Atlantic Jet 
meandering.

Meandering 
of the 

Atlantic Jet

https://docs.google.com/file/d/1srehUmYv-p9Lq81XgW5JSxxIhPAmYcN7/preview
https://docs.google.com/file/d/1rnPOcDav6_2DVhD3TZsh2E-NA4uSoi6S/preview


Summary

● Dynamic Mode Decomposition decomposes the 
data into modes that evolve according to a single 
(complex-valued) frequency.

● Clear time signature enables easy correlation with 
tidal components and identification of tidal 
harmonics.  

● Individual DMD modes correlate with specific 
features and mechanisms of ocean dynamics: 
West Alboran Gyre, Atlantic Jet, hydraulic 
transition at Camarinal Sill, radiating internal 
waves, …

● DMD modes additionally isolate less-obvious 
features: secondary gyre at Ceuta, hydraulic 
jump, meandering of Atlantic Jet, Kelvin waves.
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Fast decay

Slow decay

Sem
idi

urn
al

Diurn
al

Duration of data

https://docs.google.com/file/d/1Su7WezoXSX19N05UITivnpV0S-R6-7S6/preview
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