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Rework DMD through Johnson-Lindenstrauss theorem 
and Random Projection
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● SVD based algorithms 
○ need more memory
○ Computationally expensive
○ Optimal Projection

● Random Projection 
○ Just matrix multiplication.
○ High quality 



● DMD separate the variables(space & time) and isolate dynamic structures by data.

● We will use Random projection for efficient calculations.

Objective & Overview 

3... ...

Example:

Analysis of data from Strait of Gibraltar by standard 
DMD.
Collaborate with: Erik Bollt, Marko Budišić, Kanaththa 
Priyankara,Sathsara Dias, Larry Pratt, Jose 
Sanchez-Garrido.

https://docs.google.com/file/d/1avV_PRKmjQ1w2PuC2xrZzklv2zCV19Su/preview
https://docs.google.com/file/d/1Su7WezoXSX19N05UITivnpV0S-R6-7S6/preview
https://docs.google.com/file/d/1g9pYhKnMi2kWU7Eg4c7O8gkEVBqDLkQe/preview
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❏ Random projection will projected data into 
reasonable space

❏ Simple and accurate calculation

❏ Low computational cost

❏ Reduce the storage cost

Dynamic Mode 
Decomposition(DMD) 
[Schmid, 2008]

Numerical procedure to 
exact dynamical features 
from flow based on Krylov 
sequence.

Connect the DMD with 
Koopman operator

DMD & Koopman 
operator
[Rowley & Mezić 2009]

Extended DMD(EDMD) 
[Williams, 2015]

randomized Dynamic Mode Decomposition(rDMD)

Kernel DMD
[Williams, 2015]

Use kernel trick to reduce 
calculation in EDMD

Koopman Operator
[Koopman, 1931]

Infinite dimensional linear 
operator which describe 
the evolution of observable 
functions.

Better Approximation for  
Koopman operator

Application of 
Koopman Operator
[Mezić, 2002]

Dynamics of Physical  systems  that  
they model  based  on  the  spectral  
properties  of  the  Koopman  operator.

Background

We are looking at DMD in lens of Johnson-Lindenstrauss 
theorem and random projection.
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Koopman operator is a tool to analyze global dynamics of a dynamical system

Koopman operator is defined by, 

 

● Meaning measure     but downstream 
by     .

● Adjoint operator of Frobenius-Perron 
operator.

Koopman operator is a 

● Linear,

● infinite dimensional 

operator.

Koopman Operator

[Koopman, 1931]
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-      contains measures of all states at  step

- Koopman  operator  acts  as a time shift on columns

Snapshot Matrix and Estimating Koopman operator

Gulf of Mexico

[Rowley & Mezić 2009]



Exact DMD

Commonly Used DMD Algorithm 
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● There are a few variations of the basic 
algorithm.

● DMD spectrum is a numerical estimator 
for Koopman spectrum. 

[Tu, et. al, 2014]

Why DMD?

- Isolate specific dynamic structures
- Equation free modeling
- Reduce the dimension of the data
- Can identify physically meaningful 

decomposition
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DMD with SVD projection

DMD in projected space with rank L projector  

DMD random projection (rDMD)

DMD in Projected Space
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● The random projection method is based on the Johnson-Lindenstrauss lemma.

[Johnson et. al, 1984]

[Papadimitriou et. al., 1998]

Johnson-Lindenstrauss Lemma and Random Projection
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DMD in projected space with rank L random projection R

Randomized DMD

Why rDMD?

- Simple calculation with high accuracy
- Reduce the computational cost
- Reduce the storage cost
- SVD based existing algorithms need to store high 

resolution data matrix and may lead to memory 
issues

- Our proposed algorithm can reduce the dimension of 
data just using matrix multiplication.
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Example: FLUID FLOW PAST A CYLINDER AT RE=100

Example: Fluid Flow
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Our proposed algorithm can reduce the dimension of data just using matrix 
multiplication.

Data source: http://dmdbook.com/

N=89351, M=150, L=25
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Application: Oceanographic Data(Strait Of Gibraltar)
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Our proposed algorithm can reduce the dimension of data just using matrix 
multiplication.

Background Mode Meandering Mode Tidal Mode

Period: 24.29 h

Period: 24.31 h

Period: 6.25 h

Period: 6.28 h
N=1,693,440, M=143, L=119
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Standard DMD rDMD

Application: Oceanographic Data(Gulf of Mexico)

NASA's stunning Perpetual Ocean animation visualizes 
ocean currents (Image: NASA/Goddard Space Flight 
Center)

N=208285, M=104, L=90
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Error Analysis with Logistic map example 



● DMD on projected space approximate 
Koopman Operator

● JL-theory grantee a Random projection. 

● rDMD 

○ Computationally Efficient simple 
algorithm

○  Reduce the storage cost.

● We will extend our current randomized 
method to extended DMD and kernel DMD.
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Summary
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The End
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Random Projection 
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Random projection matrix B can be use to reduced the dimensionality of input/output space and new 
operator is given by :

Random projection to EDMD

Random Projection with kernelized DMD



Proposed randomized kernelized DMD
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