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Overview

Self-assembly of DNA graphs has been shown
to give polynomial time solutions to hard com-
putational problems such as the 3-SAT and k-
colorability problems. Jonoska et al. showed
that for every graph, there exists a thickened
graph with a boundary component, a reporter
strand, that traverses every edge at least once and
no more than twice. In conjunction with edge
weighting algorithms for self-assembly graphs,
we consider the relationship between reporter
strands and postman tours in solving problems
involving minimal weight Eulerian walks, such as
the Windy Postman Problem.

Preliminaries

We consider 3-valent graphs only.

Figure 1: A 3-degree perturbation of a vertex of degree 4

• Postman Tour: A cycle that traverses every
edge of a weighted, connected graph at least once
and no more than twice. (denoted by τ )

• Windy Postman Problem: The NP-Hard
problem of identifying a postman tour of minimal
weight in a directed and weighted graph.

• Elementary Boundary Operation: A
permutation of the edges incident to a vertex.

• Reporter Strand: A boundary component
that traverses each edge at least once and no
more than twice. (denoted by σ)

Thickened Graphs

A thickened graph is a topological manifold which
contains the graph G as a deformation retract.

Figure 2: A graph, its thickened graph, and its thickened homo-
morphism created by one boundary operation.

Postman Tours of K4

For every graph there exists a maximal length post-
man tour traversing every edge twice and a mini-
mal length postman tour constructed by connect-
ing pairs of odd vertices. The maximal postman
tour is never optimal for 3-valent graphs, and thus,
we proceed with identifying non-maximal postman
tours. For K4, non-maximal tours traverse exactly
2 or 3 edges twice. As shown in Figure 3, every non-
maximal postman tour of K4 can be represented by
a reporter strand following 1, 2, or 3 of boundary
operations.

Figure 3: Boundary operations of K4

It is obvious that a reporter strand represents a post-
man tour, so we consider the converse. Is there a re-
porter strand for every postman tour? The answer
is "yes" for K4, but "no" in general.

Postman Tours and Reporter
Strands

Figure 4: Is there a reporter strand for representing this postman
tour?

In the graph shown above, the addition of the four
purple lines creates a postman tour of length 16.
This postman tour cannot be explicitly represented
as a reporter strand while maintaining even parity.

Theorem

For every non-maximal postman tour τ of a given
graph G there exists a thickened graph F (G)
with a reporter strand σ that contains τ .

Outline of the Proof

Basis Case

Figure 5: 3-valent multi-graphs of order 2

Inductive Step

Figure 6: Possible cases for the addition of two vertices

Outline of the Proof Cont’d

Figure 7: Extension of σ to a graph of order 2n + 2

Conclusions and Future Work

Analysis of the topological structure of thick-
ened graphs proves to be beneficial for study-
ing self-assembly graphs. Algorithms relying on
the requisite number of hydrogen bonds necessary
within a sequenced strand exist for the inclusion
of weight in constructing self-assembly graphs. In
conjunction with the analysis of reporter strands,
these algorithms could offer solutions to mini-
mal weight Eulerian walk problems. The iden-
tification and removal of the superfluous loops
included in the resulting reporter strands is nec-
essary to establish a complete algorithm.
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